Sensor Applications, Experimentation, and Logistics

€ 60,79
Bisher € 60,99
pdf eBook
Sofort lieferbar (Download)
Februar 2010



This book constitutes the thoroughly refereed post-conference proceedings of the First International Conference, SENSAPPEAL 2009, held in Athens, Greece, in September 2009.
The 12 revised full papers were carefully reviewed and selected from 24 submissions. The papers cover various topics such as WSN for fire hazard detection and monitoring, WSN for precision horticulture, a nephelometric turbidity system for monitoring residential drinking water quality, deployment of a wireless ultrasonic sensor array for psychological monitoring, WISEBED: an open large-scale wireless sensor network testbed, SmartEN: a Marie Curie research framework for WSN in smart management of the human environment, embedded web server for the AVR butterfly enabling immediate access to wireless sensor node readings, as well as TinySPOTComm: facilitating communication over IEEE 802.15.4 between Sun SPOTs and TinyOS-based motes.


1;Preface;5 2;Organization;7 3;Table of Contents;9 4;Wireless Sensor Network Application for Fire Hazard Detection and Monitoring;11 4.1;Introduction;11 4.2;Sensor Node Design;13 4.2.1;Sensor Node Hardware;13 4.2.2;Sensor Node Modes of Operation;14 4.3;Central Node Design and Operations;17 4.3.1;Central Node GUI Design;19 4.4;Application Field Testing;21 4.5;Conclusions;24 4.6;References;25 5;Fire Detection and Localization Using Wireless Sensor Networks;26 5.1;Introduction;26 5.2;Fire Detection Algorithm;27 5.3;Fire Localization Algorithm;29 5.4;Simulation Results;32 5.5;Conclusion;35 5.6;References;36 6;Design and Implementation of a Wireless Sensor Network for Precision Horticulture;37 6.1;Introduction;37 6.2;General Characteristics of the Network Deployed;38 6.3;The GAIA Soil-Mote;39 6.3.1;Hardware Overview;40 6.3.2;Software Organization;42 6.3.3;Hydra Probe II Sensor;43 6.3.4;Power Management and Autonomy;44 6.3.5;Environmental-Mote, Water-Mote and Data-Sink/Gateway;45 6.4;Monitoring Application;47 6.5;Experimental Results;49 6.6;Final Remarks and Conclusions;50 6.7;References;51 7;A Nephelometric Turbidity System for Monitoring Residential Drinking Water Quality;53 7.1;Introduction and Definition;53 7.2;Turbidity Measuring Techniques;55 7.3;Design and Development;56 7.4;Calibration and Testing;59 7.5;Interferences in Turbidity Measurement;62 7.6;Conclusions and Future Work;62 7.6.1;Conclusions;62 7.6.2;Future Work;62 7.7;References;63 8;Deployment of a Wireless Ultrasonic Sensor Array for Psychological Monitoring;66 8.1;Introduction;66 8.2;System Architecture;67 8.2.1;Mote Development Environment;68 8.2.2;Sensor Array;68 8.2.3;Tracking Filter;68 8.3;Surmounted Challenges;72 8.3.1;Power Network;72 8.3.2;Sensor Access Pattern: Noise vs. Speed Tradeoff;73 8.3.3;Differential Calibration;74 8.4;Results;74 8.4.1;Performance of Distance Tracking;75 8.4.2;System Specifications;76 8.5;Conclusion;76 8.6;Future Work;76 8.7;References;77 9;WISEBED: An Open Large-Scale Wir
eless Sensor Network Testbed;78 9.1;Introduction Motivation;78 9.2;Previous Related Work;80 9.3;Overall Architecture and Considerations;82 9.4;Software Aspects of WISEBED;85 9.4.1;Integration with the Shawn Network Simulator;86 9.4.2;Federation of Testbeds and Related APIs;86 9.5;Hardware Aspects of WISEBED Current Deployment;89 9.5.1;L\"{u}beck Testbed Description;90 9.5.2;RACTI Testbed Description;91 9.6;Use-Case Scenarios Research Challenges;93 9.6.1;Scenarios;93 9.6.2;Research Challenges;94 9.7;Conclusions Future Work;95 9.8;References;96 10;SmartEN: A Marie Curie Research Framework for Wireless Sensor Networks in Smart Management of the Human Environment;98 10.1;Introduction;98 10.2;Overview of Previous Work;100 10.3;SmartEN Objectives and Challenges;102 10.4;Work Programme and Methodology;105 10.4.1;Work Programme 1 Wireless Sensor Networks;106 10.4.2;Work Programme 2 Sensor Signal Processing;107 10.4.3;Work Programme 3 Non Destructive Evaluation;108 10.4.4;Work Programme 4 Smart Proactive Management;110 10.4.5;Horizontal Integration through Multi-disciplinary Research Projects;111 10.5;SmartEN Applications;111 10.6;Discussion and Conclusions;113 10.7;References;114 11;Software Update Recovery for Wireless Sensor Networks;117 11.1;Introduction;117 11.2;Related Work;118 11.3;Automated Local Recovery;118 11.3.1;Identifying Loss of Control;119 11.3.2;Recovery Action;120 11.3.3;Two-Phase Approach;120 11.3.4;State Machine;120 11.4;High-Reliability Polycasting;121 11.4.1;Minimum Spanning Tree Algorithm;122 11.4.2;Flooding Algorithm (FDMT);122 11.4.3;Analytical Comparison;122 11.4.4;Experimental Comparison;123 11.5;Protocol Overview;125 11.6;Simulation;126 11.6.1;Behavioral Results;126 11.6.2;Estimating Long-Term Reliability;128 11.6.3;Propagation Delay;129 11.6.4;Recovery Latency;129 11.6.5;Energy Use;130 11.6.6;Energy vs. Latency Tradeoff;132 11.6.7;Feedback;134 11.7;Conclusions and Future Work;134 11.8;References;135 12;A Framework for Time-Controlled and Portable
WSN Applications;136 12.1;Introduction;136 12.2;Background;137 12.2.1;Constraints with Development in Lightweight Software Environments;137 12.2.2;Challenges to Enabling Temporal Control over Processes and System Abstraction;138 12.2.3;Related Work;138 12.2.4;Software Architecture Overview;140 12.3;Architecture;141 12.3.1;A Micro-kernel as the Core of the Software System;141 12.3.2;Achieving Timely Control over Processes;141 12.3.3;Achieving Portable Software;145 12.4;Experimental Validation;149 12.4.1;Temporal Control;149 12.4.2;Memory Footprint;151 12.4.3;Micro-kernel Latency Overhead;151 12.4.4;Portability;152 12.5;Conclusions;152 12.6;References;153 13;Embedded Web Server for the AVR Butterfly Enabling Immediate Access to Wireless Sensor Node Readings;155 13.1;Introduction;155 13.2;Basic Scheme;158 13.2.1;Related Work and uIP-AVR;159 13.2.2;Structure and Difficulties;159 13.3;Web Server Application;160 13.4;Zigbee Gateway Application;162 13.4.1;Baseline System Extension;162 13.4.2;Final System Architecture;164 13.5;Conclusions and Future Work;166 13.6;References;166 14;Low-Power Radio Communication in Industrial Outdoor Deployments: The Impact of Weather Conditions and ATEX-Compliance;169 14.1;Introduction;169 14.2;Related Work;170 14.3;Impact of Temperature in Outdoor Deployments;171 14.3.1;Experimental Setup;172 14.3.2;Experimental Results;173 14.4;Impact of Humidity, Fog, Snow and Rainfall;175 14.4.1;Experimental Setup;175 14.4.2;Experimental Results;176 14.5;ATEX Compliance;179 14.5.1;Experimental Setup;180 14.5.2;Results;182 14.5.3;Findings;183 14.6;Summary and Conclusions;184 14.7;References;185 15;TinySPOTComm: Facilitating Communication over IEEE 802.15.4 between Sun SPOTs and TinyOS-Based Motes;187 15.1;Introduction;187 15.2;Current Frameworks for Sensor Network Development;188 15.2.1;TinyOS;188 15.2.2;Java Based Frameworks;189 15.2.3;Squawk and Sun SPOTs;190 15.3;IEEE 802.15.4 and LowPAN;190 15.3.1;IEEE 802.15.4;191 15.3.2;LowPAN;193 15.4;Radio Stack
Compatibility;194 15.4.1;MAC Layer;195 15.4.2;Network Layer;197 15.5;Performance;199 15.5.1;Setup;199 15.5.2;Round Trip Time;200 15.5.3;Throughput;200 15.5.4;Impact on Sun SPOT Performance;201 15.6;Conclusion and Future Work;203 15.7;References;203 16;Author Index;205


EAN: 9783642118708
Untertitel: First International Conference, SENSAPPEAL 2009, Athens, Greece, September 25, 2009, Revised Selected Papers. Sprache: Englisch. Dateigröße in MByte: 7.
Verlag: Springer Berlin Heidelberg
Erscheinungsdatum: Februar 2010
Format: pdf eBook
Kopierschutz: Adobe DRM
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben