Analog Circuit Design

€ 77,29
epub eBook
Sofort lieferbar (Download)
September 2011



Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions will aid systems designers with elegant and practical design techniques that focus on common circuit design challenges. The book¿s in-depth application examples provide insight into circuit design and application solutions that you can apply in today¿s demanding designs.

Online support package, including LTspiceÒ software, Design Notes, plus videos and data sheets can be found at:

  • Covers the fundamentals of linear/analog circuit and system design to guide engineers with their design challenges
  • Based on the Application Notes of Linear Technology, the foremost designer of high performance analog products, readers will gain practical insights into design techniques and practice
  • Broad range of topics, including power management tutorials, switching regulator design, linear regulator design, data conversion, signal conditioning, and high frequency/RF design
  • Contributors include the leading lights in analog design, Robert Dobkin, Jim Williams and Carl Nelson, among others


1;Cover;1 2;Analog Circuit Design;4 3;Copyright;5 4;Dedication;6 5;Contents;10 6;Acknowledgments;14 7;Introduction;15 8;Publishers Note;12 9;Foreword;17 10;Part 1 -Power Management;18 10.1;Section 1 -Power Management Tutorials ;20 10.1.1;1 -Ceramic input capacitors cancause overvoltage transients;21;Plug in the wall adapter at your own risk;21;Building the Test Circuit;21;Turning on the switch;22;Testing a portable application;22;Input voltage transients with different input elements;22;Optimizing Input Capacitors;23;Conclusion;23 10.1.2;2 -Minimizing switching regulator residue in linear regulator outputs;24;Introduction;24;Switching regulator AC output content;24;Ripple and spike rejection;25;Ripple/spike simulator;28;Linear regulator high frequency rejection evaluation/optimization;29;References;31 10.1.3;3 -Power Conditioning for notebook and palmtop systems;35;Introduction;35;LT1432 driver for high efficiency 5V and 3.3V buck regulato r;35;Circuit description;36;BICMOS switching regulator family provides highest step-down efficiencies;37;Surface mount capacitors for switching regulator applications;39;High efficiency linear supplies;39;Power switching with dual high side micropower N-channel MOSFET drivers;40;LT1121 micropower 150mA regulator with shutdown;41;Cold cathode fluorescent display driver;41;Battery charging;42;Lead acid battery charger;42;NiCAD charging;43;LCD display contrast power supply;44;A 4-cell NiCad regulator/charger;44;Power supplies for palmtop computers;47;2-Cell input palmtop power supply.circuits;48;LCD bias from 2 AA cells;48;4-Cell input palmtop power supply.circuits;48;A CCFL backlight driver for palmtop.machines
;51 10.1.4;4 -2-Wire virtual remote sensing for voltage regulators;52;Introduction;52;"Virtual" remote sensing;52;Applications;53;VRS linear regulators;53;VRS equipped switching regulators;55;VRS based isolated switching supplies;55;VRS halogen lamp drive circuit;62;References;62;Appendix A A primer on LT4180 VRS operation;66 10.2;Section 2 -Switching Regulator Design;74 10.2.1;5 -LT1070 design manual;76;Introduction;76;Preface;77;Smaller versions of the LT1070;77;Inductance calculations;77;Protecting the magnetics;78;New switch current specification;78;High supply voltages;78;Discontinuous “oscillations” (ringing);79;LT1070 operation;79;Pin functions;80;Input supply (VIN);80;Ground pin;80;Feedback pin;80;Compensation pin (Vc);82;Output pin;83;Basic switching regulator topologies;84;Buck converter;84;Boost regulators;85;Combined buck-boost regulator;86;'Cuk converter;86;Flyback regulator;86;Forward converter;87;Current-boosted boost converter;87;Current-boosted buck converter;87;Application circuits;88;Boost mode (output voltage higher than input);88;Inductor;89;Output capacitor;90;Frequency compensation;90;Current steering diode;90;Short-circuit conditions;90;Negative buck converter;91;Output divider;91;Duty cycle;91;Inductor;91;Output capacitor;92;Output filter;92;Input filter;93;Frequency compensation;93;Catch diode;93;Negative-to-positive buck-boost converter;93;Setting output voltage;94;Inductor;94;Output capac
itor;95;Current steering diode;95;Positive buck converter;95;Duty cycle limitations;96;Inductor;97;Output voltage ripple;97;Output capacitor;97;Output filter;97;Flyback converter;98;Output divider;99;Frequency compensation;99;Snubber design;99;Output diode (D1);100;Output capacitor (C1);101;Totally isolated converter;102;Output capacitors;104;Load and line regulation;104;Frequency compensation;105;Positive current-boosted buck converter;105;Negative current-boosted buck converter;106;Negative input/negative output flyback converter;107;Positive-to-negative flyback converter;107;Voltage-boosted boost converter;108;Negative boost converter;109;Positive-to-negative buck boost converter;109;Current-boosted boost converter;109;Forward converter;110;Frequency compensation;112;Check margins;114;Eliminating start-up overshoot;114;External current limiting;114;Driving external transistors;116;Output rectifying diode;117;Input filters;119;Efficiency calculations;120;LT1070 operating current;120;LT1070 switch losses;121;Output diode losses;121;Inductor and transformer losses;121;Snubber losses;121;Total losses;121;Output filters;121;Input and output capacitors;123;Inductor and transformer basics;123;Cores with gaps;124;Inductor selection process;125;Transformer design example;127;Heat sinking information;130;Troubleshooting hints;130;Warning;130;Subharmonic oscillations;131;Inductor/transformer manufacturers;139;Core manufac
turers;139;Bibliography;139 10.2.2;6 -Switching regulators for poets;141;Basic flyback regulator;142;-48V to 5V telecom flyback regulator;143;Fully-isolated telecom flyback regulator;144;100W off-line switching regulator;146;Switch-controlled motor speed controller;149;Switch-controlled peltier reference;149;Acknowledgments;150 10.2.3;7 -Step-down switching regulators;159;Basic step down circuit;159;Practical step-down switching regulator;159;Dual output step-down regulator;161;Negative output regulators;161;Current-boosted step-down regulator;162;Post regulation-fixed case;163;Post regulation-variable case;163;Low quiescent current regulators;163;Wide range, high power, high voltage regulator;167;Regulated sinewave output DC/AC converter;170;References;173;Appendix A Physiology of the LT1074;173;Appendix BGeneral considerations for switchingregulator design;175;Inductor selection;176 10.2.4;8 -A monolithic switching regulator with output noise;186;Introduction;186;Switching regulator "noise";186;A noiseless switching regulator approach;187;A practical, low noise monolithic regulator;187;Measuring output noise;188;System-based noise "measurement";191;Transition rate effects on noise and efficiency;191;Negative output regulator;192;Floating output regulator;192;Floating bipolar output converter;192;Battery-powered circuits;194;Performance augmentation;194;Low quiescent current regulator;194;High voltage input regulator;196;24V-to-5V low noise regulator;198;10W, 5V to 12V low noise regulator;199;7500V isolated low noise supply;200;References;202;Appendix AA hi
story of low noise DC/DC;202;History;202;Measuring noise;206;Low frequency noise;206;Preamplifier and oscilloscope selection;206;Ground loops;209;Pickup;209;Poor probing technique;209;Violating coaxial signal transmissionfelony case;210;Violating coaxial signal transmission misdemeanor case;211;Proper coaxial connection path;211;Direct connection path;212;Test lead connections;212;Isolated trigger probe;213;Trigger probe amplifier;213;Breadboarding and Layout Considerations;217;5V to 12V Breadboard;218;5V to 15V breadboard;218;Demonstration board;218;Testing ripple rejection;220;Transformers;222;Inductors;222;Hints for lowest noise performance;223;Noise tweaking;223;Capacitors;224;Damper network;224;Measurement technique;224;Noise test data;224;Pot core;225;ER core;225;Toroid;227;E core;227;Summary;227;Conclusion;227;Rectifier reverse recovery;233;Ringing in clamp Zeners;238;Paralleled rectifiers;238;Paralleled snubber or damper caps;238;Ringing in transformer shield leads;238;Leakage inductance fields;239;External air gap fields;239;Poorly bypassed high speed logic;239;Probe use with a "LISN" ;239;Conclusion;240;Summary;240 10.2.5;9 -Powering complex FPGA-based systems using highly integrated DC/DC Module regulator systems;242;Innovation in DC/DC design;242;DC/DC Module Regulators: Complete Systems in an LGA Package;242;48A from four parallel DC/DC Module regulators;244;Start-up, soft-start and current sharing;245 10.2.5
.5;Conclusion;245 10.2.6;10 -Powering complex FPGA-based systemsusing highly integrated DC/DC Module regulator systems;246;60W by paralleling four DC/DC Module regulators;246;Thermal performance;246;Simple copy and paste layout;247;Conclusion;248 10.2.7;11 -Diode Turn-On Time Induced Failures in Switching Regulators;249;Introduction;249;Diode turn-on time perspectives;249;Detailed measurement scheme;249;Diode Testing and Interpreting Results;253;References;254 10.3;Section 3 -Linear Regulator Design;266 10.3.1;12 -Performance verification of low noise, low dropout regulators;267;Introduction;267;Noise and noise testing;267;Noise testing considerations;267;Instrumentation performance verification;267;Regulator noise measurement;269;Bypass capacitor (CBYP) influence;269;Interpreting comparative results;269;References;269;References;269;Appendix A Architecture of a low noise LDO;276;Noise minimization;276;Pass element considerations;276;Dynamic characteristics;277;Bypass capacitance and low noise performance;278;Output capacitance and transient response;278;Ceramic capacitors;278;AC voltmeter types;279;Rectify and average;279;Analog computation;279;Thermal;280;Performance comparison of noise driven AC voltmeters;280;Thermal voltmeter circuit;281 10.4;Section 4 -High Voltage and High Current Applications;284 10.4.1;13 -Parasitic capacitance effects in step-up transformer design;285;Brian Huffman;285;Appendix A;288 10.4.2;14 -High efficiency, high density, PolyPhase converters for high current applications;289;Introduction;289;How do PolyPhase techniques affect circuit performance?;289;Current-sha
ring;290;Output ripple current cancellation and reduced output ripple voltage;290;Improved load transient response;292;Input ripple current cancellation;293;Input ripple current cancellation;293;Design considerations;295;Selection of phase number;296;PolyPhase converters using the LTC1629;296;Layout considerations;296;Design example: 100A PolyPhase power supply;298;Design details;298;MOSFETs;298;Inductors;298;Capacitors;299;Test results;299;Summary;301 10.5;Section 5 -Powering Lasers and Illumination Devices;304 10.5.1;15 -Ultracompact LCD backlight inverters;305;Introduction;305;Limitations and problems of magnetic CCFL transformers;305;Piezoelectric transformers;305;Developing a PZT transformer control scheme;306;Additional considerations and benefits;310;Display parasitic capacitance and its effects;310;References;311;Appendix A Piezoelectric transformers;312;"Good Vibrations";312;Piezowhat?;312;Alchemy and black magic;312;The fun part;313;A resonant personality;313;Piezoelectricity;314;Piezoelectric effect;314;Axis nomenclature;315;Electrical-mechanical analogies;315;Coupling;315;Electrical, mechanical property changes with load;315;Elasticity;316;Piezoelectric equation;316;Basic piezoelectric modes;316;Poling;316;Post Poling;317;Applied voltage;317;Applied force;317;Shear;317;Piezoelectric benders;317;Loss;318;Simplified Piezoelectric Element Equivalent Circuit;318;Simple stack piezoelectric transformer;318;Conclusion;322 10.5.2;16 -A ther
moelectric cooler temperaturecontroller for fiber optic lasers;325;Introduction;325;Temperature Controller Requirements;325;Temperature Controller Details;326;Thermal Loop Considerations;326;Temperature Control Loop Optimization;327;Temperature Stability Verification;329;Reflected Noise Performance;332;References;334 10.5.3;17 -Current sources for fiber optic lasers;336;Introduction;336;Design criteria for fiber optic laser current sources;336;Detailed discussion of performance issues;336;Required power supply;336;Output current capability;336;Output voltage compliance;336;Efficiency;337;Laser connection;337;Output current programming;337;Stability;337;Noise;337;Transient response;337;Detailed discussion of laser protection issues;337;Overshoot;337;Enable;337;Output current clamp;337;Open laser protection;337;Basic current source;337;High efficiency basic current source;338;Grounded cathode current source;339;Single supply, grounded cathode current source;339;Fully protected, self-enabled, grounded cathode current source;340;2.5A, grounded cathode current source;342;0.001% noise, 2A, grounded cathode current source;344;0.0025% noise, 250mA, grounded anode current source;346;Low noise, fully floating output current source;346;Anode-at-supply current source;347;References;349;Appendix A Simulating the laser load;349 10.5.4;18 -Bias voltage and current sense circuits for avalanche photodiodes;355;Introduction;355;Simple current monitor circuits (with problems);356;Carrier based current monitor;356;DC coupled current moni
tor;357;APD bias supply;358;APD bias supply and current monitor;359;Transformer based APD bias supply and current monitor;359;Inductor based APD bias supply;360;200V output noise APD bias supply;362;Low noise APD bias supply and current monitor;363;0.02% accuracy current monitor;363;Digital output 0.09% accuracycurrent monitor;364;Digital output current monitor;364;Digital output current monitor and APD bias supply;367;Summary;367;References;370;Appendix A Low error feedback signal derivation techniques;370;Divider current error compensationlow"side"shunt case;370;Divider current error compensation"high side"shunt case;371;Ground loops;372;Pickup;372;Poor probing technique;372;Violating coaxial signal transmissionfelony case;372;Violating coaxial signal transmission misdemeanor case;373;Proper coaxial connection path;373;Direct connection path;373;Test lead connections;374;Isolated trigger probe;375;Trigger probe amplifier;375 10.6;Section 6 -Automotive and Industrial Power Design;384 10.6.1;19 -Developments in battery stack voltage measurement;385;The battery stack problem;385;Transformer based sampling voltmeter;386;Detailed circuit operation;386;Multi-cell version;388;Automatic control and calibration;388;Firmware description;392;Measurement details;392;Adding more channels;393;References;394 11;Part 2 -Data Conversion, Signal Conditioning and High Frequency;408 11.1;Section 1 -Data Conversion ;410 11.1.1;20 -Some techniques for direct digitization of transducer outputs;411;Jim Williams;411 11.1.2;21 -The care and feeding of high performance ADCs: get all the bits you paid for;423;Introduction;4
23;An ADC has many "inputs";423;Ground planes and grounding;423;Supply bypassing;424;Reference bypassing;425;Driving the analog input;425;Switched capacitor inputs;425;Filtering wideband noise from the input signal;426;Choosing an op amp;426;Driving the convert-start input;426;Effects of jitter;427;Routing the data outputs;428;Conclusion;429;Family features;429;High speed A/D converters worlds best power/speed ratio;423 11.1.3;22 -A standards lab grade 20-bit DAC with 0.1ppm/C drift;431;Introduction;431;20-bit DAC architecture;431;Circuitry details;433;Linearity considerations;433;DC performance characteristics;433;Dynamic performance;433;Conclusion;435;References;435;Appendix A A history of high accuracy digital-toanalog conversion;435;Approach and error considerations;437;Circuitry details;438;Construction;441;Results;441;Acknowledgments;441 11.1.4;23 -Delta sigma ADC bridge measurement techniques;478;Introduction;478;Low cost, precision altimeter uses direct digitization;479;How Many Bits?;479;Increasing Resolution with Amplifiers;479;How Much Gain?;481;ADC Response to Amplifier Noise;481;How Many Bits?;482;Faster or More Resolution with the LTC2440;483;How Many Bits?;484;Appendix A Frequency response of an AC excited bridge;485;RMS vs Peak-to-Peak Noise;486;Psychological Factors;486 11.1.5;24 -1ppm settling time measurement for a monolithic 18-bit DAC;497;Introduction;497;DAC settling time;497;Considerations for measuring DAC settling time;498;Sampling based high resolution DAC settling time measurement;499;Developing a sa
mpling switch;500;Electronic switch equivalents;500;Transconductance amplifier based switch equivalent;500;DAC settling time measurement method;502;Detailed settling time circuitry;503;Settling time circuit performance;505;Using the sampling-based settling time circuit;505;References;507;Appendix A A history of high accuracy digital-to-analog conversion;508;Delay compensation;511;Circuit trimming procedure;511;Ohm's law;519;Shielding;520;Connections;521;Settling time circuit performance verification;524 11.2;Section 2 -Signal Conditioning;532 11.2.1;25 -Applications for a switched-capacitor instrumentation building block;535;Instrumentation amplifier;536;Ultrahigh performance instrumentation amplifier;536;Lock-in amplifier;537;Wide range, digitally controlled, variable gain amplifier;538;Precision, linearized platinum RTD signal conditioner;539;Relative humidity sensor signal conditioner;540;LVDT signal conditioner;541;Charge pump F.Vand V.F converters;542;12-bit A.D converter;543;Miscellaneous circuits;544;Voltage-controlled current sourcegrounded source and load;546;Current sensing in supply rails;547;0.01% analog multiplier;547;Inverting a reference;547;Low power, 5V driven, temperature compensated crystal oscillator;547;Simple thermometer;547;High current, "inductorless,"switching regulator;547 11.2.2;26 -Application considerations and circuits for a new chopper-stabilized op amp;549;Applications;553;Standard grade variable voltage reference;553;Ultra-precision instrumentation amplifier;553;High performance isolation amplifier;554;Stabilized, low input capacitance buffer (FET probe);556;Chopper-stabilized
comparator;557;Stabilized data converter;558;Wide range V.F converter;558;1Hz to 30MHz V.F converter;560;16-bit A/D converter;560;Simple remote thermometer;563;Output stages;563;References;566 11.2.3;27 -Designing linear circuits for 5V single supply operation;567;Linearized RTD signal conditioner;567;Linearized output methane detector;568;Cold junction compensated thermocouple signal conditioner;569;5V powered precision instrumentation amplifier;570;5V powered strain gauge signal conditioner;572;"Tachless"motor speed controller;572;4-20mA current loop transmitter;574;Fully isolated limit comparator;575;Fully isolated 10-bit A/D converter;576 11.2.4;28 -Application considerations for an instrumentation lowpass filter;580;Description;580;Tuning the LTC1062;580;LTC1062 clock requirements;581;Internal oscillator;582;Clock feedthrough;582;Single 5V supply operation;583;Dynamic range and signal/noise ratio;583;Step response and burst response;585;LTC1062 shows little aliasing;585;Cascading the LTC1062;585;Using the LTC1062 to create a notch;587;Comments on capacitor types;589;Clock circuits;589;Acknowledgement;590 11.2.5;29 -Micropower circuits for signal conditioning;591;Platinum RTD signal conditioner;591;Thermocouple signal conditioner;592;Sampled strain gauge signal conditioner;592;Strobed operation strain gauge bridge signal conditioner;594;Thermistor signal conditioner for current loop application;594;Microampere drain wall thermostat;595;Freezer alarm;596;12-Bit A/D converter;596;10-Bit, 100A A/D converter;598;20s sample-hold;599;10kHz voltage-to-frequency converter;600;1MHz voltag
e-to-frequency converter;602;Switching regulator;603;Post regulated micropower switching regulator;604 11.2.6;30 -Thermocouple measurement;613;Introduction;613;Thermocouples in perspective;613;Signal conditioning issues;615;Cold junction compensation;615;Amplifier selection;617;Additional circuit considerations;617;Differential thermocouple amplifiers;618;Isolated thermocouple amplifiers;618;Digital output thermocouple isolator;622;Linearization techniques;623;References;629;Appendix A Error sources in thermocouple systems;629 11.2.7;31 -Take the mystery out of the switched-capacitor filter;631;Introduction;631;Overview;631;The switched-capacitor filter;631;Circuit board layout considerations;632;Power supplies;634;Input considerations;635;Offset voltage nulling;635;Slew limiting;638;Aliasing;639;Filter response;640;What kind of filter do I use? Butterworth, Chebyshev, Bessel or Elliptic;640;Filter sensitivity;644;How stable is my filter?;644;Output considerations;645;THD and dynamic range;645;THD in active RC filters;645;Noise in switched-capacitor filters;645;Bandpass filters and noisean illustration;647;Clock circuitry;647;Jitter;647;Clock synchronization with A/D sample clock;649;Clock feedthru;649;Conclusions;650;Bibliography;654 11.2.8;32 -Bridge circuits;655;Resistance bridges;655;Bridge output amplifiers;655;DC bridge circuit applications;656;Common mode suppression techniques;656;Single supply common mode suppression circuits;659;Switched-capacitor based instrumentation amplifiers;662;Optically coupled switched-capacitor instr
umentation amplifier;663;Platinum RTD resistance bridge circuits;664;Digitally corrected platinum resistance bridge;665;Thermistor bridge;670;Low power bridge circuits;670;Strobed power bridge drive;672;Sampled output bridge signal conditioner;672;Continuous output sampled bridge signal conditioner;673;High resolution continuous output sampled bridge signal conditioner;674;AC driven bridge/synchronous demodulator;676;AC driven bridge for level transduction;676;Time domain bridge;677;Bridge oscillatorsquare wave output;678;Quartz stabilized bridge oscillator;679;Sine wave output quartz stabilized bridge oscillator;679;Wien bridge-based oscillators;680;Diode bridge-based 2.5MHz precision rectifier/AC voltmeter;683;References;686 11.2.9;33 -High speed amplifier techniques;696;Preface;696;Introduction;697;Perspectives on high speed design;697;Mr. Murphy's gallery of high speed amplifier problems;697;Tutorial Section;705;About Cables, Connectors and Terminations;706;About Probes and Probing Techniques;707;About Oscilloscopes;710;About Ground Planes;714;About Bypass Capacitors;715;Breadboarding Techniques;715;Oscillation;718;Applications Section IAmplifiers;655;Fast 12-bit digital-to-analog converter (DAC) amplifier;720;2-Channel Video Amplifier;721;Simple Video Amplifier;721;Loop Through Cable Receivers;721;DC stabilization — summing point technique;721;DC stabilization — differentially sensed technique;722;DC stabilization — servo controlled FET input stage;722;DC stabilization — full differential inputs with parallel paths;723;DC stabilization — ful
l differential inputs, gain-of-1000 with parallel paths;724;High Speed Differential Line Receiver;725;Transformer Coupled Amplifier;726;Differential Comparator Amplifier with Adjustable Offset;727;Differential Comparator Amplifier with Settable Automatic Limiting and Offset;728;Photodiode Amplifier;729;Fast Photo Integrator;730;Fiber Optic Receiver;731;40MHz fiber optic receiver with adaptive trigger;731;50MHz high accuracy analog multiplier;731;Power Booster Stage;732;High Power Booster Stage;734;Ceramic Bandpass Filters;735;Crystal Filter;736;Applications Section II Oscillators;736;Sine Wave Output Quartz Stabilized Oscillator;736;Sine Wave Output Quartz Stabilized Oscillator with Electronic Gain Control;736;DC Tuned 1MHz-10MHz Wien Bridge Oscillator;737;Complete AM radio station;738;Applications section IIIData conversion;739;1Hz1MHz voltage-controlled sine wave oscillator;739;1Hz–10MHz V→F Converter;741;8-bit, 100ns sample-hold;743;15ns current summing comparator;744;50MHz adaptive threshold trigger circuit;744;Fast Time-to-Height (Pulsewidth-to-Voltage) Converter;745;True RMS wideband voltmeter;747; Applications Section Iv Miscellaneous Circuits ;749;RF Leveling Loop;749;Voltage Controlled Current Source;750;High Power Voltage Controlled Current Source;750;18ns circuit breaker;751;References;752;Appendix A ABCs of probes Tektronix, Inc;753;ABC's of probes Tektronix, Inc;753;The vital link in your measurement system;753;Why not use a piece of wire?;753;Benefits of using probes;755;How probes affect your measurements;755;Scope Bandwidth at the Probe Tip?;760;How ground leads affect measurements;761;How probe design affects your measurements;762;Tips on using probes;763;Introduction:;764;Measuring Amplifier Settling Time;771;The Oscillation Problem Frequency Compensation Without Tears;775;Measuring Probe-Oscilloscope Response;781;An Ultra-Fast High Impedance Probe;783;Additional Comments on Breadboarding;785;FCC licensing and construction permit applications for commerical AM broadcasting stations;811;About Current Feedback;812;Current Feedback Basics;812;High Frequency Amplifier Evaluation Board;814;The contributions of Edsel Murphy to the understanding of the behavior of inanimate objects;816;I. Introduction;817;II. General Engineering;817;III. Mathematics;817;IV. Prototyping and Production;817;V. Specifying;818;References*;818 11.2.10;34 -A seven-nanosecond comparator for single supply operation;819;Introduction;819;The LT1394 an overview;820;The rogue's gallery of high speed comparator problems;821;Tutorial section;824;About pulse generators;824;About cables, connectors and terminations;824;About probes and probing techniques;825;About oscilloscopes;829;About ground planes;832;About bypass capacitors;833;Breadboarding techniques;834;Applications;835;Crystal oscillators;835;Switchable output crystal oscillator;836;Temperature-compensated crystal oscillator (TXCO);836;Voltage-controlled crystal oscillator (VCXO);837;Voltage-tunable clock skew generator;838;Simple 10MHz voltage
-to-frequency converter;839;Precision 1Hz to 10MHz voltage-to-frequency converter;840;Fast, high impedance, variable threshold trigger;842;High speed adaptive trigger circuit;842;18ns, 500V sensitivity comparator;843;Voltage-controlled delay;844;10ns sample-and-hold;845;Programmable, sub-nanosecond delayed pulse generator;846;Fast pulse stretcher;848;20ns response overvoltage protection circuit;849;References;851;Appendix A About level shifts;851 11.2.11;35 -Understanding and applying voltage references;856;Essential features;858;Reference pitfalls;859;Current-hungry loads;859;"NC" pins ;860;Board leakage;860;Trim-induced temperature drift;860;Burn-in;861;Board stress;861;Temperature-induced noise;862;Reference applications;863;Conclusion;864;For further reading;864;Appendix A Buried Zener: low longterm driftand noise;864 11.2.12;36 -Instrumentation applications for a monolithic oscillator;867;Introduction;867;Clock types;867;A (very) simple, high performance oscillator;868;Platinum RTD digitizer;868;Thermistor-to-frequency converter;869;Isolated, 3500V breakdown, thermistor-to-frequency converter;870;Relative humidity sensor digitizer-hetrodyne based;871;Relative humidity sensor digitizercharge pump based ;872;Relative humidity sensor digitizertime domain bridge based ;873;40nV noise, 0.05V/C drift, chopped bipolar amplifier ;873;45nV noise, 0.05V/C drift, chopped FET amplifier ;875;Clock tunable, filter based sine wave generator;877;Clock tunable, memory based sine wave generator;877;Clock tunable notch filter;879
14;Clock tunable interval generator with 20 x 106:1 dynamic range ;880;8-bit, 80s, passive input, A/D converter ;881;References;882 11.2.13;37 -Slew rate verification for wideband amplifiers;885;Introduction;885;Amplifier dynamic response;885;LT1818 Short form specifications;886;Pulse generator rise time effects on measurement;886;Subnanosecond rise time pulse generators;887;360ps rise time pulse generator;887;Circuit optimization;888;Refining slew rate measurement;890;References;892;Appendix A Verifying rise time measurement integrity;892 11.2.14;38 -Instrumentation circuitry using RMS-to-DC converters;896;Introduction;896;Isolated power line monitor;896;Fully isolated 2500V breakdown, wideband RMS-to-DC converter;898;Low distortion AC line RMS voltage regulator;899;X1000 DC stabilized millivolt preamplifier;901;Wideband decade ranged x 1000 preamplifier ;901;Wideband, isolated, quartz crystal RMS current measurement;902;AC voltage standard with stable frequency and low distortion;904;RMS leveled output random noise generator;905;RMS amplitude stabilized level controller;906;References;908;Appendix A RMS-to-DC conversion Joseph Petrofsky;908 11.2.15;39 -775 nanovolt noise measurement for a low noise voltage reference;913;Introduction;913;Noise measurement;913;Noise measurement circuit performance;914;References;917;Appendix A Mechanical and layout considerations;918;Appendix BInput capacitor selection procedure;918;Appendix CPower, grounding and shieldingconsiderations;919 11.3;Section 3 -High Frequency/RF Design;922 11.3.1;40 -LT5528 WCDMA ACPR, AltCPR and noise measurements;923;Introduction;923 11.3.2;41 -Measurin
g phase and delay errors accurately in I/Q modulators;927;Introduction;927;Measurements;929;First measurementnull out the I/Q modulator image signal with normal signal connections (Figure 41.6) ;929;Second measurementnull out the I/Q modulator image signal with reversed differential baseband signals to the modulator's differential I-channel inputs (Figure 41.7) ;930;Third measurementnull out the I/Q modulator image signal after reversing the I and Q inputs to the modulator (Figure 41.8) ;930;Calculation of phase impairments;931;Applying the method;932;Conclusion;932 12;Subject Index;934


"This book is a great companion volume to Volume I with informative application notes and a full complement of reference designs. The chapters are not just every day application notes and reference designs, but give insights to problem-solving, design decision-making the thought process that goes along with a robust, successful design. That's why I love this book¿This book is a keeper that needs to be on every designer's bookshelf, right next to Volume I.", March 2013

"Subtitled 'Immersion in the black art of analog design', this huge book has over 1,200 A4 pages of joy¿you will learn something from every page¿delightfully readable.", April 2013

"¿this is quite an extensive work with 1250 pages. A collection of "application notes"¿[it will] help you understand and solve practical problems. Here interesting questions will be answered such as `Why is my phone ringing,¿ but also highly complex power supply circuits." --Design and Elektronik, February 2013

"For analog designers or anyone who brushes against analog design issues¿Analog Circuit Design: A Tutorial Guide to Applications and a great place to start. Each time I look through this book, I get new insight and understanding based on the knowledge, experience, challenges, and mysteries the authors and other contributors bring¿books like this can help you get your job done faster and with fewer re-spins." --Planet Analog, January 2013

"This in-depth source book of circuit design solutions supplies engineers with practical design techniques that focus on common analog challenges. The full support package includes online resources such as data sheets, design notes and LTspice design simulation software tools from Linear Technology." and others, December 2012

"The 932-page book compiles 41 of Linear Tech's applications and each app note has its own chapter. The book divides information into two sections; one that covers power management (19 app notes) and a second that covers data conversion, signal conditioning, and Highfrequency & RF (22 app notes)... Anyone who works with analog electronics--and those who hope to--should own a copy of this book."

"This is a handsome book that I will happily find space for on my shelf. It is extremely good value for money and is, thank heavens, a prime example of why it will be some time before e-books have a real place in the publication of technology texts. There should be a place for this latest ANALOG Circuit Design in the hands of every novice, journeyman, and experienced analog designer." --En

"In September, three months after a stroke ended Jim¿s life, the book - what may be the only coffee table book for analog engineers - came out. What¿s remarkable is how easy it is to get into, how much it makes you want to browse - like a traditional coffee-table book. As my friend Paul Rako, described Jim¿s writing style, `He never tried to impress you with his math or his intellect. He didn't make things complicated so you would think he was smart. He made things look simple. That is why he was brilliant.¿" --Electronic

EAN: 9780123851864
Untertitel: A Tutorial Guide to Applications and Solutions. 200:Adobe eBook. Sprache: Englisch.
Verlag: Elsevier Science
Erscheinungsdatum: September 2011
Seitenanzahl: 960 Seiten
Format: epub eBook
Kopierschutz: Adobe DRM
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben