HUDU

Abstract State Machines


€ 63,99
 
gebunden
Sofort lieferbar
April 2003

Beschreibung

Beschreibung

Quelli che s'innamoran di pratica senza scienzia sono come 'l nocchieri ch'entra in navilio sanza timone o bussola, 1 che mai ha certezza dove si vada. - Leonardo da Vinci Ich habe oft bemerkt, dass wir uns durch allzuvieles Symbolisieren 2 die Sprache fu ¿r die Wirklichkeit untu ¿chtig machen. - Christian Morgenstern This is the place to express our thanks. First of all we thank all those who over the years have actively contributed to shaping the novel software design and analysis method explained in this book. They are too numerous to be mentioned here. They all appear in some way or the other on the following pages, in particular in the bibliographical and historical Chap. 9 which can be read independently of the book. We then thank those who have helped with detailed critical comments on the draft chapters to shape the way our arguments are presented in this book: M. B¿ orger (Diron Mu ¿nster), I. Craggs (IBMHursley),G. DelCastillo(SiemensMunc ¿ hen),U. Gl¿ asser(SimonFraser University, Vancouver,Canada),J. Huggins(Kettering University,Michigan, USA), B. Koblinger (IBM Heidelberg), P. Pa ¿ppinghaus (Siemens Munc ¿ hen), A. Preller (Universit¿ e de Montpellier, France), M. -L. Potet (INP de Gre- ble, France),W. Reisig (Humboldt-Universit¿ at zu Berlin, Germany),H. Rust (Universit¿ at Cottbus, Germany), G. Schellhorn (Universit¿ at Augsburg, G- many), B. Thalheim (Universit¿ at Cottbus, Germany) and a dozen student generationsat Universita `di Pisa. We thankM. Barmet(ETH Zur ¿ ich)for her solutions of the exercises in Chap. 8. We also thank L.

Inhaltsverzeichnis

1 Introduction.- 1.1 Goals of the Book and Contours of its Method.- 1.1.1 Stepwise Refinable Abstract Operational Modeling.- 1.1.2 Abstract Virtual Machine Notation.- 1.1.3 Practical Benefits.- 1.1.4 Harness Pseudo-Code by Abstraction and Refinement.- 1.1.5 Adding Abstraction and Rigor to UML Models.- 1.2 Synopsis of the Book.- 2 ASM Design and Analysis Method.- 2.1 Principles of Hierarchical System Design.- 2.1.1 Ground Model Construction (Requirements Capture).- 2.1.2 Stepwise Refinement (Incremental Design).- 2.1.3 Integration into Software Practice.- 2.2 Working Definition.- 2.2.1 Basic ASMs.- 2.2.2 Definition.- 2.2.3 Classification of Locations and Updates.- 2.2.4 ASM Modules.- 2.2.5 Illustration by Small Examples.- 2.2.6 Control State ASMs.- 2.2.7 Exercises.- 2.3 Explanation by Example: Correct Lift Control.- 2.3.1 Exercises.- 2.4 Detailed Definition (Math. Foundation).- 2.4.1 Abstract States and Update Sets.- 2.4.2 Mathematical Logic.- 2.4.3 Transition Rules and Runs of ASMs.- 2.4.4 The Reserve of ASMs.- 2.4.5 Exercises.- 2.5 Notational Conventions.- 3 Basic ASMs.- 3.1 Requirements Capture by Ground Models.- 3.1.1 Fundamental Questions to be Asked.- 3.1.2 Illustration by Small Use Case Models.- 3.1.3 Exercises.- 3.2 Incremental Design by Refinements.- 3.2.1 Refinement Scheme and its Specializations.- 3.2.2 Two Refinement Verification Case Studies.- 3.2.3 Decomposing Refinement Verifications.- 3.2.4 Exercises.- 3.3 Microprocessor Design Case Study.- 3.3.1 Ground Model DLXseq.- 3.3.2 Parallel Model DLXpar Resolving Structural Hazards.- 3.3.3 Verifying Resolution of Structural Hazards (DLXpar).- 3.3.4 Resolving Data Hazards (Refinement DLXdata).- 3.3.5 Exercises.- 4 Structured ASMs (Composition Techniques).- 4.1 Turbo ASMs (seq, iterate, submachines, recursion).- 4.1.1 Seq and Iterate (Structured Programming).- 4.1.2 Submachines and Recursion (Encapsulation and Hiding).- 4.1.3 Analysis of Turbo ASM Steps.- 4.1.4 Exercises.- 4.2 Abstract State Processes (Interleaving).- 5 Synchronous Multi-Agent ASMs.- 5.1 Robot Controller Case Study.- 5.1.1 Production Cell Ground Model.- 5.1.2 Refinement of the Production Cell Component ASMs.- 5.1.3 Exercises.- 5.2 Real-Time Controller (Railroad Crossing Case Study).- 5.2.1 Real-TimeProcess Control Systems.- 5.2.2 Railroad Crossing Case Study.- 5.2.3 Exercises.- 6 Asynchronous Multi-Agent ASMs.- 6.1 Async ASMs: Definition and Network Examples.- 6.1.1 Mutual Exclusion.- 6.1.2 Master-Slave Agreement.- 6.1.3 Network Consensus.- 6.1.4 Load Balance.- 6.1.5 Leader Election and Shortest Path.- 6.1.6 Broadcast Acknowledgment (Echo).- 6.1.7 Phase Synchronization.- 6.1.8 Routing Layer Protocol for Mobile Ad Hoc Networks.- 6.1.9 Exercises.- 6.2 Embedded System Case Study.- 6.2.1 Light Control Ground Model.- 6.2.2 Signature (Agents and Their State).- 6.2.3 User Interaction (Manual Control).- 6.2.4 Automatic Control.- 6.2.5 Failure and Service.- 6.2.6 Component Structure.- 6.2.7 Exercises.- 6.3 Time-Constrained Async ASMs.- 6.3.1 Kermit Case Study (Alternating Bit/Sliding Window).- 6.3.2 Processor-Group-Membership Protocol Case Study.- 6.3.3 Exercises.- 6.4 Async ASMs with Durative Actions.- 6.4.1 Protocol Verification using Atomic Actions.- 6.4.2 Refining Atomic to Durative Actions.- 6.4.3 Exercises.- 6.5 Event-Driven ASMs.- 6.5.1 UML Diagrams for Dynamics.- 6.5.2 Exercises.- 7 Universal Design and Computation Model.- 7.1 Integrating Computation and Specification Models.- 7.1.1 Classical Computation Models.- 7.1.2 System Design Models.- 7.1.3 Exercises.- 7.2 Sequential ASM Thesis (A Proof from Postulates).- 7.2.1 Gurevich's Postulates for Sequential Algorithms.- 7.2.2 Bounded-Choice Non-Determinism.- 7.2.3 Critical Terms for ASMs.- 7.2.4 Exercises.- 8 Tool Support for ASMs.- 8.1 Verification of ASMs.- 8.1.1 Logic for ASMs.- 8.1.2 Formalizing the Consistency of ASMs.- 8.1.3 Basic Axioms and Proof Rules of the Logic.- 8.1.4 Why Deterministic Transition Rules?.- 8.1.5 Completeness for Hierarchical ASMs.- 8.1.6 The Henkin Model Construction.- 8.1.7 An Extension with Explicit Step Information.- 8.1.8 Exercises.- 8.2 Model Checking of ASMs.- 8.3 Execution of ASMs.- 9 History and Survey of ASM Research.- 9.1 The Idea of Sharpening Turing's Thesis.- 9.2 Recognizing the Practical Relevance of ASMs.- 9.3 Testing the Practicability of ASMs.- 9.3.1 Architecture Design and Virtual Machines.- 9.3.2 Protocols.- 9.3.3 Why use ASMs for Hw/Sw Engineering?.- 9.4 Making ASMs Fit for their Industrial Deployment.- 9.4.1 Practical Case Studies.- 9.4.2 Industrial Pilot Projects and Further Applications.- 9.4.3 Tool Integration.- 9.5 Conclusion and Outlook.- References.- List of Problems.- List of Figures.- List of Tables.

Portrait

Egon Börger ist Professor für Informatik an der Universität Pisa (Italien) und Alexander-von-Humboldt-Forschungspreisträger.

Pressestimmen

From the reviews:"The Turing Test gives a comprehensive, in-depth and contemporary assessment of this classic topic in artificial intelligence. This book elaborates in detail the numerous conflicting points of view on many aspects of this multifaceted, controversial subject. ... This volume is a valuable reading for research on the Turing test and for teaching undergraduate and graduate students in philosophy, computer science, and cognitive science." (Jörg Desel, Zentralblatt MATH, Vol. 1040 (9), 2004)"Borger and Stark do an admirable job of documention and extending a method for bridging the considerable gap between theoretical system models, which often only allow for toy systems to be modeled and require proofs to be done only by hand, and real-life systems and practices." (Shrisha, Rao, Ceda Rapids, IA, Computing Reviews, February, 2004)  
EAN: 9783540007029
ISBN: 3540007024
Untertitel: A Method for High-Level System Design and Analysis. Inklusive CD-ROM.
Verlag: Springer-Verlag GmbH
Erscheinungsdatum: April 2003
Seitenanzahl: X
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben