Bayesian Logical Data Analysis for the Physical Sciences

€ 60,49
Lieferbar innert 2 Wochen
Mai 2010



Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. By encompassing both inductive and deductive logic, Bayesian analysis can improve model parameter estimates by many orders of magnitude. It provides a simple and unified approach to all data analysis problems, allowing the experimenter to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. The book also discusses numerical techniques for implementing the Bayesian calculations, including an introduction to Markov Chain Monte-Carlo integration and linear and nonlinear least-squares analysis seen from a Bayesian perspective. In addition, background material is provided in appendices and supporting Mathematica® notebooks are available, providing an easy learning route for upper-undergraduates, graduate students, or any serious researcher in physical sciences or engineering.


Preface; Acknowledgements; 1. Role of probability theory in science; 2. Probability theory as extended logic; 3. The how-to of Bayesian inference; 4. Assigning probabilities; 5. Frequentist statistical inference; 6. What is a statistic?; 7. Frequentist hypothesis testing; 8. Maximum entropy probabilities; 9. Bayesian inference (Gaussian errors); 10. Linear model fitting (Gaussian errors); 11. Nonlinear model fitting; 12. Markov Chain Monte Carlo; 13. Bayesian spectral analysis; 14. Bayesian inference (Poisson sampling); Appendix A. Singular value decomposition; Appendix B. Discrete Fourier transforms; Appendix C. Difference in two samples; Appendix D. Poisson ON/OFF details; Appendix E. Multivariate Gaussian from maximum entropy; References; Index.


Phil Gregory is Professor Emeritus at the Department of Physics and Astronomy at the University of British Columbia.


'As well as the usual topics to be found in a text on Bayesian inference, chapters are included on frequentist inference (for contrast), non-linear model fitting, spectral analysis and Poisson sampling.' Zentralblatt MATH 'The examples are well integrated with the text and are enlightening.' Contemporary Physics
EAN: 9780521150125
ISBN: 0521150124
Untertitel: A Comparative Approach with Mathematica Support. 132 b/w illus. 74 exercises. Sprache: Englisch.
Verlag: Cambridge University Press
Erscheinungsdatum: Mai 2010
Seitenanzahl: 488 Seiten
Format: kartoniert
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben