HUDU

Learning with Partially Labeled and Interdependent Data


€ 85,49
 
gebunden
Sofort lieferbar
Mai 2015

Beschreibung

Beschreibung

This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.

Inhaltsverzeichnis

Introduction.
Introduction to learning theory.
Semi-supervised learning.
Learning with interdependent data.

Innenansichten

EAN: 9783319157252
ISBN: 3319157256
Untertitel: Auflage 2015. 12 schwarz-weiße Abbildungen, Bibliographie. Book. Sprache: Englisch.
Verlag: Springer-Verlag GmbH
Erscheinungsdatum: Mai 2015
Seitenanzahl: XIII
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben