The Symmetry Perspective

€ 53,49
Lieferbar innerhalb von 2-3 Tagen
Oktober 2003



The framework of 'symmetry' provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS


1. Steady-State Bifurcation.- 1.1. Two Examples.- 1.2. Symmetries of Differential Equations.- 1.3. Liapunov-Schmidt Reduction.- 1.4. The Equivariant Branching Lemma.- 1.5. Application to Speciation.- 1.6. Observational Evidence.- 1.7. Modeling Issues: Imperfect Symmetry.- 1.8. Generalization to Partial Differential Equations.- 2. Linear Stability.- 2.1. Symmetry of the Jacobian.- 2.2. Isotypic Components.- 2.3. General Comments on Stability of Equilibria.- 2.4. Hilbert Bases and Equivariant Mappings.- 2.5. Model-Independent Results for D3Steady-State Bifurcation.- 2.6. Invariant Theory for SN.- 2.7. Cubic Terms in the Speciation Model.- 2.8. Steady-State Bifurcations in Reaction-Diffusion Systems.- 3. Time Periodicity and Spatio-Temporal Symmetry.- 3.1. Animal Gaits and Space-Time Symmetries.- 3.2. Symmetries of Periodic Solutions.- 3.3. A Characterization of Possible Spatio-Temporal Symmetries.- 3.4. Rings of Cells.- 3.5. An Eight-Cell Locomotor CPG Model.- 3.6. Multifrequency Oscillations.- 3.7. A General Definition of a Coupled Cell Network.- 4. Hopf Bifurcation with Symmetry.- 4.1. Linear Analysis.- 4.2. The Equivariant Hopf Theorem.- 4.3. Poincaré-Birkhoff Normal Form.- 4.4. ?(2) Phase-Amplitude Equations.- 4.5. Traveling Waves and Standing Waves.- 4.6. Spiral Waves and Target Patterns.- 4.7. ?(2) Hopf Bifurcation in Reaction-Diffusion Equations.- 4.8. Hopf Bifurcation in Coupled Cell Networks.- 4.9. Dynamic Symmetries Associated to Bifurcation.- 5. Steady-State Bifurcations in Euclidean Equivariant Systems.- 5.1. Translation Symmetry, Rotation Symmetry, and Dispersion Curves.- 5.2. Lattices, Dual Lattices, and Fourier Series.- 5.3. Actions on Kernels and Axial Subgroups.- 5.4. Reaction-Diffusion Systems.- 5.5. Pseudoscalar Equations.- 5.6. The Primary Visual Cortex.- 5.7. The Planar Bénard Experiment.- 5.8. Liquid Crystals.- 5.9. Pattern Selection: Stability of Planforms.- 6. Bifurcation From Group Orbits.- 6.1. The Couette-Taylor Experiment.- 6.2. Bifurcations From Group Orbits of Equilibria.- 6.3. Relative Periodic Orbits.- 6.4. Hopf Bifurcation from Rotating Waves to Quasiperiodic Motion.- 6.5. Modulated Waves in Circular Domains.- 6.6. Spatial Patterns.- 6.7. Meandering of Spiral Waves.- 7. Hidden Symmetry and Genericity.- 7.1. The Faraday Experiment.- 7.2. Hidden Symmetry in PDEs.- 7.3. The Faraday Experiment Revisited.- 7.4. Mode Interactions and Higher-Dimensional Domains.- 7.5. Lapwood Convection.- 7.6. Hemispherical Domains.- 8. Heteroclinic Cycles.- 8.1. The Guckenheimer-Holmes Example.- 8.2. Heteroclinic Cycles by Group Theory.- 8.3. Pipe Systems and Bursting.- 8.4. Cycling Chaos.- 9. Symmetric Chaos.- 9.1. Admissible Subgroups.- 9.2. Invariant Measures and Ergodic Theory.- 9.3. Detectives.- 9.4. Instantaneous and Average Symmetries, and Patterns on Average.- 9.5. Synchrony of Chaotic Oscillations and Bubbling Bifurcations.- 10. Periodic Solutions of Symmetric Hamiltonian Systems.- 10.1. The Equivariant Moser-Weinstein Theorem.- 10.2. Many-Body Problems.- 10.3. Spatio-Temporal Symmetries in Hamiltonian Systems.- 10.4. Poincaré-Birkhoff Normal Form.- 10.5. Linear Stability.- 10.6. Molecular Vibrations.



Ian Stewart, geb. 1945, ist der beliebteste Mathematik-Professor Großbritanniens. Seit Jahrzehnten bemüht er sich erfolgreich, seine Wissenschaft zu popularisieren. Er studierte Mathematik in Cambridge und promovierte an der Universität Warwick. Dort ist er heute Professor für Mathematik und Direktor des Mathematics Awareness Center. Seit 2001 ist Stewart zudem Mitglied der Royal Society. Er lebt mit seiner Familie in Coventry.


From the reviews:
"This book was awarded the Ferran Sunyier i Balaguer Prize for 2001, and I am sure that it will be a very useful resource not only for researchers in this area but also for those who want to obtain the benefits of using this approach in applications." --Bulletin of the American Mathematical Society (Review of hardcover edition)
[The] rich collection of examples makes the book ... extremely useful for motivation and for spreading the ideas to a large Community. This [review] is far from complete and cannot reflect the authors' unique way of presenting examples, asking questions, giving answers or forming an intuition."(MATHEMATICAL REVIEWS)
EAN: 9783764321710
ISBN: 3764321717
Untertitel: From Equilibrium to Chaos in Phase Space and Physical Space. 'Progress in Mathematics'. Softcover reprint of the original 1st ed. 2002. Book. Sprache: Englisch.
Verlag: Birkhäuser
Erscheinungsdatum: Oktober 2003
Seitenanzahl: 348 Seiten
Format: kartoniert
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben