Neural-Symbolic Learning Systems

€ 143,99
Sofort lieferbar
August 2002



Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.


1. Introduction and Overview.- 1.1 Why Integrate Neurons and Symbols?.- 1.2 Strategies of Neural-Symbolic Integration.- 1.3 Neural-Symbolic Learning Systems.- 1.4 A Simple Example.- 1.5 How to Read this Book.- 1.6 Summary.- 2. Background.- 2.1 General Preliminaries.- 2.2 Inductive Learning.- 2.3 Neural Networks.- 2.3.1 Architectures.- 2.3.2 Learning Strategy.- 2.3.3 Recurrent Networks.- 2.4 Logic Programming.- 2.4.1 What is Logic Programming?.- 2.4.2 Fixpoints and Definite Programs.- 2.5 Nonmonotonic Reasoning.- 2.5.1 Stable Models and Acceptable Programs.- 2.6 Belief Revision.- 2.6.1 Truth Maintenance Systems.- 2.6.2 Compromise Revision.- I. Knowledge Refinement in Neural Networks.- 3. Theory Refinement in Neural Networks.- 3.1 Inserting Background Knowledge.- 3.2 Massively Parallel Deduction.- 3.3 Performing Inductive Learning.- 3.4 Adding Classical Negation.- 3.5 Adding Metalevel Priorities.- 3.6 Summary and Further Reading.- 4. Experiments on Theory Refinement.- 4.1 DNA Sequence Analysis.- 4.2 Power Systems Fault Diagnosis.- 4.3.Discussion.- 4.4.Appendix.- II. Knowledge Extraction from Neural Networks.- 5. Knowledge Extraction from Trained Networks.- 5.1 The Extraction Problem.- 5.2 The Case of Regular Networks.- 5.2.1 Positive Networks.- 5.2.2 Regular Networks.- 5.3 The General Case Extraction.- 5.3.1 Regular Subnetworks.- 5.3.2 Knowledge Extraction from Subnetworks.- 5.3.3 Assembling the Final Rule Set.- 5.4 Knowledge Representation Issues.- 5.5 Summary and Further Reading.- 6. Experiments on Knowledge Extraction.- 6.1 Implementation.- 6.2 The Monk's Problems.- 6.3 DNA Sequence Analysis.- 6.4 Power Systems Fault Diagnosis.- 6.5 Discussion.- III. Knowledge Revision in Neural Networks.- 7. Handling Inconsistencies in Neural Networks.- 7.1 Theory Revision in Neural Networks.- 7.1.1The Equivalence with Truth Maintenance Systems.- 7.1.2Minimal Learning.- 7.2 Solving Inconsistencies in Neural Networks.- 7.2.1 Compromise Revision.- 7.2.2 Foundational Revision.- 7.2.3 Nonmonotonic Theory Revision.- 7.3 Summary of the Chapter.- 8. Experiments on Handling Inconsistencies.- 8.1 Requirements Specifications Evolution as Theory Refinement.- 8.1.1Analysing Specifications.- 8.1.2Revising Specifications.- 8.2 The Automobile Cruise Control System.- 8.2.1Knowledge Insertion.- 8.2.2Knowledge Revision: Handling Inconsistencies.- 8.2.3Knowledge Extraction.- 8.3 Discussion.- 8.4 Appendix.- 9. Neural-Symbolic Integration: The Road Ahead.- 9.1 Knowledge Extraction.- 9.2 Adding Disjunctive Information.- 9.3 Extension to the First-Order Case.- 9.4 Adding Modalities.- 9.5 New Preference Relations.- 9.6 A Proof Theoretical Approach.- 9.7 The "Forbidden Zone" [Amax, Amin].- 9.8 Acceptable Programs and Neural Networks.- 9.9 Epilogue.
EAN: 9781852335120
ISBN: 1852335122
Untertitel: Foundations and Applications. 2002. Auflage. Book. Sprache: Englisch.
Verlag: Springer
Erscheinungsdatum: August 2002
Seitenanzahl: 288 Seiten
Format: kartoniert
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben