HUDU

Nonparametric Sequential Selection Procedures


€ 79,99
 
kartoniert
Lieferbar innerhalb von 2-3 Tagen
Januar 1980

Beschreibung

Beschreibung

New (-6ta.wtic.a£.) me.thod!.. -6p11.ea.d abJtoad only -t6 they Me ava.il.a.b.te -tVl aVl ex.teVl­ -6-tve -6el6-c.ovtta-tVled pJte-6evttatioVl. It WM ~ peJtc.eptioVl that made M WlUte dOWVl the ma-tVl -tde.a.6 06 a Vlew bMnc.h 06 -6equentia£. -6ta.wtic.a£. theOlty, c.aU.ed "Nonpa­ JtCWle;(;!UC. Sequentia£. Selec.tion pJtoc.edUlte-6". What do we M-60c.-i.ate will tw VlOtiOVl? Well, a -6elec.tioVl ptwc.eduJte Oit -6elec.tion model -i.-6 Vlofung but a -6ta.wtic.aI'. expeJt-i.ment de-6-tgned 60ft -tdevt.ti6y-tng the be-6t 06 -6eveJtal'. a£.teJtnaUVe-6, a PJtob£em we Me 6ac.ed will a.imO-6t eveJtyday. The -6ta.w­ tic.a£. method!.. -tnduded -tVl ~ book. aU.ow to -6elec.t the be-6t al'.teJtnative when­ eveJt theJte -i.-6 aVlY -6ub-6ta.vt.tial'. d-i.6neJteVlc.e among them. The bOOQ C.Ovl:UUVl-6 e-6-6ent-taUy the Jte-6uLt-6 06 the pMt teVl yeM-6, -tVlc.fud-i.Vlg OUlt own Jte-6eaJtc.h onLy pallUaU.y pubfuhed -tVl -6ta.wtic.aI'. jOUltnru. It -i.-6 VlUtheJt a c.oUec.tio n 06 -6ta.wtic.a£. Jtec.upe-6 VlOJt a tlteawe eXc..tM-tve.ty theoJtetic.a£. It -i.-6 de-6-tgned pJt-i.maltdy 60Jt -6c.-tenwt-6 will -6tJtOVlg mathematic.a£. bac.QgltOuVlCu -tnte­ Jte-6ted -tn Vlew developmeVlt-6 06 appued -6tafutic.-6.

Inhaltsverzeichnis

General Introduction.- 1 Sequential Procedures for Selecting the Best of k ? 2 Binomial Populations Introduction.- 1 Selection Procedures with Unrestricted Patient Horizon.- 1 The Selection Model [2; PW; |SA?SB| = r].
- 1.1 Derivation of the critical r-value.
- 1.2 Derivation of the expectations.- 2 The Selection Model [2; VT; |SA?SB| = s].
- 2.1 Derivation of the critical s-value.
- 2.2 Derivation of the expectations.- 3 The Selection Model [2; PL; |FA?FB| = r].
- 3.1 Derivation of the critical r-value.
- 3.2 Derivation of the expectations.- 4 Comparison of the Selection Procedures No.1-No..
- 4.1 Some general remarks.
- 4.2 Comparison of PW- and VT-sampling.
- 4.3 Comparison of PW- and PL-sampling.
- 4.4 Comparison of PL- and VT-sampling.
- 4.5 Recapitulation.
- 4.6 Concluding remarks.
- 4.7 Numerical results.- 5 Two-Stage Selection Procedures.
- 5.1 The structure of two-stage selection procedures.
- 5.2 Derivation of P(CS).
- 5.3 Derivation of s(m,n,kc,M) and r(m,n,kc,M).
- 5.4 Derivation of the expectations.
- 5.5 Addition of PL-sampling.
- 5.6 Concluding remarks.
- 5.7 Numerical results.- 6 The Selection Model [2; PW; max{SA,SB} = r].
- 6.1 Derivation of the critical r-value.
- 6.2 Derivation of the expectations.
- 6.3 Expectations for large r.- 7 The Selection Model [2; VT; max{SA,SB} = r].
- 7.1 Derivation of the critical r-value.
- 7.2 Derivation of the expectations.
- 7.3 Expectations for large r.- 8 Comparison of the Selection Models No.6 and No.7 - Some Modifications of these Models.
- 8.1 Comparison of the selection models no.6 and no.7.
- 8.2 The selection model [2; PW; min{FA,FB} = r].
- 8.3 The selection model [2; PL; max{FA,FB} = r].
- 8.4 Concluding remarks.
- 8.5 Numerical results.- 9 The Nature of Termination of a Classical Sequential Selection Procedure.
- 9.1 Basic notions.
- 9.2 The stopping-behaviour of selection model no.1.
- 9.3 The stopping-behaviour of selection model no.2.
- 9.4 The stopping-behaviour of the selection models no.3 and no.5.
- 9.5 The stopping-behaviour of selection model no.6.
- 9.6 The stopping-behaviour of selection model no.7.- 10 The Selection Model [k; PW; max{S1,...,Sk} = r].
- 10.1 Introductory remarks.
- 10.2 Derivation of the critical r-value.
- 10.3 Derivation of the expectations.
- 10.4 Expectations for large r.- 11 The Selection Model [k; VT; max{S1,...,Sk} = r].
- 11.1 Derivation of the critical r-value.
- 11.2 Derivation of the expectations.
- 11.3 Expectations for large r.
- 11.4 Concluding remarks.
- 11.5 Numerical results.- 12 Expected Truncation Points.- 13 The Selection Model [2;PW;|SA-SB|=r or $$\left| {{{\hat p}_A} - {{\hat p}_B}} \right| \geqslant c/\left( {{F_A} + {F_B}} \right)$$].
- 13.1 Introduction.
- 13.2 Derivation of the critical r- and c-values.
- 13.3 Numerical results.- 14 The Selection Model [2;VT;|SA-SB|=s or $$\left| {{{\hat p}_A} - {{\hat p}_B}} \right| \geqslant d/\left( {{F_A} + {F_B}} \right)$$].
- 14.1 Derivation of the critical s- and d-values.
- 14.2 Numerical results.- 15 The Selection Models [k;PW;el.Ai if Sj?Si=r] and [k;VT;e1.Ai if Sj?Si=s].
- 15.1 The PW-elimination procedure.
- 15.2 The VT-elimination procedure.
- 15.3 Numerical results for the PW-procedure.
- 15.4 Numerical results for the VT-procedure.
- 15.5 Comparison of selection models.- 2 Selection Procedures with Restricted Patient Horizon.- 1 The Selection Model [2; PW; max{SA+FB, SB+FA} = r].
- 1.1 Introduction.
- 1.2 Derivation of the P (CS)-value.
- 1.3 Determination of the LFC.
- 1.4 Derivation of the critical r-value.
- 1.5 Derivation of the expectations.
- 1.6 Numerical results.- 2 The Selection Model [2; PW; max{SA,SB} = r or FA=FB = c].
- 2.1 Derivation of the P (CS)-value.
- 2.2 Derivation of the critical r- and c-values.
- 2.3 Derivation of the expectations.
- 2.4 Numerical results.- 3 The Selection Model [2; VT; max{SA,SB} = r or min{FA,FB} = c].
- 3.1 Derivation of the P (CS)-value.
- 3.2 Derivation of the critical r- and c-values.
- 3.3 Derivation of the expectations.
- 3.4 Numerical results.- 4 The Selection Model [2; VT; max{SA,SB} = r or max{FA,FB} = c].
- 4.1 Derivation of the P (CS)-value.
- 4.2 Derivation of the critical r- and c-values.
- 4.3 Derivation of the expectations.
- 4.4 Numerical results.- 5 The Selection Model [2; PW; |SA?SB| = r or FA+FB = s].
- 5.1 Derivation of the P (CS)-value.
- 5.2 Derivation of the critical r- and s-values.
- 5.3 Derivation of the expectations.
- 5.4 Numerical results.- 6 The Selection Model [k;PW;max{S1,...,Sk}=r or min{F1,...,Fk}=c].
- 6.1 Introductory remarks.
- 6.2 Derivation of the P (CS)-value.
- 6.3 Derivation of the critical r- and c-values.
- 6.4 Derivation of the expectations.
- 6.5 Numerical results.- 7 The Selection Model [k;VT;max{S1,...,Sk}=r or min{F1,...,Fk}=c].
- 7.1 Derivation of the P (CS)-value.
- 7.2 Derivation of the critical r- and c-values.
- 7.3 Derivation of the expectations.
- 7.4 Numerical results.- 8 The Selection Model [k;VT;max{S1,...,Sk}=r or el.Ai if Fi=c].
- 8.1 Derivation of the P (CS)-value.
- 8.2 Derivation of the critical r- and c-values.
- 8.3 Numerical results.- 9 Further Elimination Procedures.
- 9.1 The selection model [k;PW;e1.Ai if Sj-Si=r or if Fi=c].
- 9.2 The selection model (k;VT;el.Ai if Sj-Si=r or if Fi=c].
- 9.3 The selection model [k;PW;e1.Ai if Sj-Si=r or stop if F1+...+Fk=s].
- 9.4 The selection model [k;PW;el.Ai if Sj-Si=r or el.Ai if $${\hat p_j} - {\hat p_i} \geqslant c/\left( {{F_i} + {F_j}} \right)$$].
- 9.5 The selection model [k;VT;el.Ai if Sj-Si=r or el.Ai if $${\hat p_j} - {\hat p_i} \geqslant d/\left( {{F_i} + {F_j}} \right)$$].
- 9.6 Numerical results.
- 9.7 Comparison of selection models.
- 9.8 Further selection procedures.- 3 Selection Procedures with Fixed Patient Horizon.- 1 Historical Remarks.- 2 The Zelen Selection Model.
- 2.1 Definition of the model.
- 2.2 Comparison with a VT-sampling procedure.
- 2.3 Determination of the optimal value of n.- 3 The Selection Models [2;PW;fixed N] and [2;VT;fixed N].
- 3.1 Introduction.
- 3.2 Comparison of the P (CS)-values.
- 3.3 Comparison of the expectations.
- 3.4 Exact and asymptotic formulae for E (NB).
- 3.5 Extension of the selection models to odd N.
- 3.6 Numerical results.
- 3.7 Equivalence to Hoel's selection model.- 4 The Selection Models [2;PW;fixed N] and [2;VT;fixed N] with Curtailment.
- 4.1 Introductory remarks.
- 4.2 The PW-sampling procedure with curtailment.
- 4.3 The VT-sampling procedure with curtailment.
- 4.4 Numerical results.- 5 The Selection Model [2;VT;fixed N] with Truncation Based on |SA?SB|.
- 5.1 Description of the model.
- 5.2 Derivation of the P (CS)-value.
- 5.3 Derivation of the probability of declaring the two treatments equal.
- 5.4 Derivation of an upper bound for E (NB).
- 5.5 Derivation of the truncation points and of the patient horizon N.
- 5.6 Numerical results.- 6 The Selection Model [2;PW;fixed N] with Truncation Based on |SA?SB|.
- 6.1 Description of the model.
- 6.2 Derivation of the P (CS)-value.
- 6.3 Derivation of the probability of declaring the two treatments equal.
- 6.4 Derivation of E (NB).
- 6.5 Numerical results.
- 6.6 Comparison of the selection models.- 7 Selection Models Based on the Randomized Play-the-Winner Rule.
- 7.1 Introductory remarks.
- 7.2 Expected number of patients on the better treatment within n trials.
- 7.3 Derivation of the P(CS)-values.
- 7.4 Derivation of the expectations.
- 7.5 Numerical results.- 8 Supplementary Investigations-Topics Requiring Further Research.- 2 Continuous Response Selection Models Introduction.- 1 Subset-Selection Procedures Based on Linear Rank-Order Statistics.- 1 Linear Rank-Order Statistics and their Asymptotic Distributions.
- 1.1 The general linear rank-order statistic.
- 1.2 Some special linear rank-order statistics.
- 1.3 The joint asymptotic distribution of the vector of rank-order statistics (S1,...,Sk) based on joint ranks.
- 1.4 The treatment of ties.- 2 Two Subset-Selection Procedures in One-Factor-Designs Including the General Behrens-Fisher-Problem.
- 2.1 The selection rule R1.
- 2.2 The infimum of the probability P(CS | R1).
- 2.3 The asymptotic distributions of two special rank-order statistics in case of consistent estimation of the unknown parameters.
- 2.4 The probability P(CS | R1) in the LFC.
- 2.5 A numerical example.
- 2.6 Some Monte-Carlo studies.- 3 The Selection Rule R1 in the Case of Equal Scale-Parameters.
- 3.1 The probability P(CS | R1) in the LFC.
- 3.2 The Haga-statistic.
- 3.3 A numerical example.
- 3.4 Some Monte-Carlo studies.- 4 A Further Class of Subset-Selection Procedures in One-Factor Designs.
- 4.1 The selection rule R2.
- 4.2 The infimum of the probability P(CS | R2).
- 4.3 Exact and asymptotic distribution of max Sj?S1 for identically distributed populations.
- 4.4 A numerical example.
- 4.5 Some Monte-Carlo studies.- 5 Some Properties of Optimality and a Brief Comparison of the Procedures No.2 - No.4.
- 5.1 Local optimality of selection rule R1.
- 5.2 Influence of the scorefunctions on the efficiency of procedures based on rules R1 and R2.
- 5.3 Comparison of the procedures given in sections 2,3,and 4.- 6 The Selection Rules R1 and R2 in Case of Randomized-Block-Designs.
- 6.1 Modified definition of ranks and the distribution of the resul-ting rank-order statistics.
- 6.2 The rules R1 and R2.
- 6.3 The asymptotic and the exact distribution of max Sl?S1 for identical parameters.
- 6.4 A numerical example.
- 6.5 Some Monte-Carlo studies.- 2 Asymptotic Distribution-Free Sequential Selection Procedures Based on an Indifference-Zone Model.- 1 Introduction.- 2 A Class of Estimators of the Functions fi(?1,...,?k).
- 2.1 General one-sample rank-order statistics.
- 2.2 The one-sample rank-order statistics based on median-scores.
- 2.3 The general Hodges-Lehmann-estimator.
- 2.4 A class of compatible estimators of the functions fi(?1,...,?k).- 3 Several Strongly Consistent Estimators.
- 3.1 An estimator of (B2(G))-1.
- 3.2 An estimator of (g(0)2)-1.
- 3.3 Two estimators of ?j(G) and G*(0,0).- 4 A Class of Sequential Selection Procedures.
- 4.1 Definition of the selection procedures.
- 4.2 Some important properties of the sequential selection procedures.- 5 A Numerical Example and some Remarks Concerning the Practical Working with the Sequential Procedures.
- 5.1 An example.
- 5.2 The implementation of the procedures.- 6 Another Class of Sequential Selection Procedures.- 7 Asymptotic Efficiency and some Monte-Carlo Studies.
- 7.1 The asymptotic efficiency of the procedures of section 4 with respect to the procedures of section 6.
- 7.2 Some Monte-Carlo studies of the procedures given in section 4 and 6.
- 7.3 Some remarks concerning the application of general scorefunctions.- 3 Methods for Selecting an Optimal Scorefunction.- 1 The Basic Idea.- 2 Two Statistics for Characterizing a Distribution.
- 2.1 An estimator for the skewness of some distribution.
- 2.2 An estimator for the peakedness of some distribution.- 3 Two Methods for Selecting a Scorefunction.
- 3.1 Selection based on the joint sample.
- 3.2 Selection based on the single samples.-
Appendix 1.-
Appendix 2.-
Appendix 3.-
Appendix 4.-
Appendix 5.-
Appendix 6.- Abbreviations.- References.
EAN: 9780817630218
ISBN: 081763021X
Untertitel: Softcover reprint of the original 1st ed. 1980. Book. Sprache: Englisch.
Verlag: Birkhäuser
Erscheinungsdatum: Januar 1980
Seitenanzahl: 508 Seiten
Format: kartoniert
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben