HUDU

Zeta Functions of Graphs: A Stroll Through the Garden

Jetzt
€ 81,99
Bisher € 82,49
 
gebunden
Lieferbar innert 2 Wochen
November 2010

Beschreibung

Beschreibung

Combinatorics meets number theory in this stimulating stroll through the zetas. Includes well-chosen illustrations and exercises, both theoretical and computer-based.

Inhaltsverzeichnis

List of illustrations; Preface; Part I. A Quick Look at Various Zeta Functions: 1. Riemann's zeta function and other zetas from number theory; 2. Ihara's zeta function; 3. Selberg's zeta function; 4. Ruelle's zeta function; 5. Chaos; Part II. Ihara's Zeta Function and the Graph Theory Prime Number Theorem: 6. Ihara zeta function of a weighted graph; 7. Regular graphs, location of poles of zeta, functional equations; 8. Irregular graphs: what is the RH?; 9. Discussion of regular Ramanujan graphs; 10. The graph theory prime number theorem; Part III. Edge and Path Zeta Functions: 11. The edge zeta function; 12. Path zeta functions; Part IV. Finite Unramified Galois Coverings of Connected Graphs: 13. Finite unramified coverings and Galois groups; 14. Fundamental theorem of Galois theory; 15. Behavior of primes in coverings; 16. Frobenius automorphisms; 17. How to construct intermediate coverings using the Frobenius automorphism; 18. Artin L-functions; 19. Edge Artin L-functions; 20. Path Artin L-functions; 21. Non-isomorphic regular graphs without loops or multiedges having the same Ihara zeta function; 22. The Chebotarev Density Theorem; 23. Siegel poles; Part V. Last Look at the Garden: 24. An application to error-correcting codes; 25. Explicit formulas; 26. Again chaos; 27. Final research problems; References; Index.

Portrait

Audrey Terras is Professor of Mathematics at the University of California, San Diego.

Pressestimmen

'The book is very appealing through its informal style and the variety of topics covered and may be considered the standard reference book in this field.' Zentralblatt MATH
EAN: 9780521113670
ISBN: 0521113679
Untertitel: 'Cambridge Studies in Advanced'. Sprache: Englisch.
Verlag: CAMBRIDGE UNIV PR
Erscheinungsdatum: November 2010
Seitenanzahl: 239 Seiten
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben