Handbook of Molecular Force Spectroscopy

€ 190,49
Sofort lieferbar
Januar 2008



Modern materials science and biophysics has increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. The peer-reviewed literature contains an increasing number of studies that either measure the interaction forces directly or use mechanical forces to deform the molecules or trigger structural transitions. Molecular force spectroscopy is the result of unprecedented advances in the capabilities of modern force measurement instruments in the past decade and describes a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these techniques include atomic force microscopy, optical tweezers, surface forces apparatus, and magnetic tweezers. These techniques typically target a specific range of experimental systems and geometries, but all use mechanical force transducers to apply and detect nanonewton range forcesbetween single molecules in condensed phases.Molecular force spectroscopy measurements have been very important for studies of adhesion and friction forces, where they provided the first truly nanoscale capabilities. Force spectroscopy has been instrumental in understanding mechanical properties and nanoscale dynamics of polymer systems from elasticity to nanoscale phase segregation. In biophysics, applications range from probing protein folding to direct mapping of intermolecular interaction potentials. This volume presents a review of modern force spectroscopy, including fundamentals of intermolecular forces, technical aspects of the force measurements, and practical applications. The Handbook begins with a review of fundamental physics of loading single and multiple chemical bonds on the nanometer scale with a discussion of thermodynamic and kinetic models of binding forces and dissipation effects in nanoscale molecular contacts, covers practical aspects of modern single-molecule level techniques, and concludes with applications of force spectroscopy to chemical and biological processes. Computer modeling of force spectroscopy experiments is addressed as well. In sum, Handbook of Molecular Force Spectroscopy is a comprehensive, authoritative guide to planning, understanding, and analyzing modern molecular force spectroscopy experiments with an emphasis on biophysical research.


Surface force apparatus measurements of molecular forces in biological adhesion (Deborah Leckband, Univ. of Illinois, Urbana-Champaign)
Force spectroscopy with optical and magnetic tweezers (Richard Conroy, Harvard University)
Chemical Force Microscopy 1: Nanoscale probing of fundamental chemical interactions (Aleksandr Noy, LLNL, Dmitry V. Vezenov, Harvard University, and Charles M. Lieber, Harvard University)
Chemical Force Microscopy 2: Interactions in complex molecular assemblies (Dmitry V. Vezenov, Harvard University, Aleksandr Noy, LLNL, and Charles M. Lieber, Harvard University)
Dynamic force spectroscopy with the atomic force microscope (Phil Williams, University of Nottingham)
Simulation in force spectroscopy (David L. Patrick, Western Washington University)
Probe tip functionalization: applications to chemical force microscopy (Craig D. Blanchard, Albert Loui, and Timothy V. Ratto, LLNL)
The dynamical response of proteins under force (Kirstine L. Anderson, Sheena E. Radford, D. Alastair Smith, and David J. Brockwell, University of Leeds)
Counting and breaking single bonds: Dynamic force spectroscopy in tethered single molecule systems (Todd A. Sulchek, Raymond W. Friddle, and Aleksandr Noy, LLNL)
Direct mapping of intermolecular interaction potentials (Paul D. Ashby, MIT)


From the reviews:
"A series of ten chapters on various aspects of force spectroscopy, each written by an expert in the field. This book ... aims 'to present a series of topics that discuss fundamental concepts and basic methodology used to perform and understand force spectroscopy experiments and illustrate them using examples from current and past research.' This work would represent a good introduction to the area for anyone wishing to know more about this increasingly important subject. Summing Up: Highly recommended. Upper-division undergraduate through professional collections." (A. Fry, CHOICE, Vol. 45 (10), June, 2008)
"A broad overview of core principles of force spectroscopy is of considerable utility and timeliness. Aleksandr Noy ... has done an admirable job of assembling such an overview as well as providing insight into likely new directions of research. ... a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advised to study this handbook ... ." (Matthew F. Paige, Journal of the American Chemical Society, Vol. 130 (26), 2008)
"In this nicely produced volume, one of the subject's key architects and proponents presents an extremely timely and effective summary of the field. The content is well judged ... . Overall, this book represents a very worthwhile and up-to-date introduction to an exciting new field of optics." (Optics and Photonics News, July/August, 2008)
EAN: 9780387499871
ISBN: 0387499873
Untertitel: 150 schw. -w. Abbildungen. Sprache: Englisch.
Verlag: Springer-Verlag GmbH
Erscheinungsdatum: Januar 2008
Seitenanzahl: XII
Format: gebunden
Es gibt zu diesem Artikel noch keine Bewertungen.Kundenbewertung schreiben